
Andrew D. Gordon
Science Advisor, Cogna, Chancery House, 53-64 Chancery Lane, London WC2A 1QS
Honorary Professor, School of Informatics, University of Edinburgh, Edinburgh EH8 9LE
https://www.linkedin.com/in/andrew-d-gordon/

August 2025

Qualifications

BSc (Computer Science, First Class Honours) 1987, University of Edinburgh.

PhD (Computer Science) 1992, University of Cambridge.

Employment
Summer intern, Digital Systems Research Center, Palo Alto, summer 1989.

Research assistant, University of Cambridge, Jan 1991-Oct 1992.

Postdoc researcher, Chalmers University, Gothenburg, Jan-Dec 1993.

Research associate, University of Cambridge, Jan 1994-Sep 1994.

Royal Society University Research Fellow, University of Cambridge, Oct 1994-Oct 1997.

Consultant, Digital Systems Research Center, Palo Alto, Aug 1996 and Mar 1997.

Researcher, Microsoft Research, Nov 1997-Aug 2002.

Visiting Professor at the University of Provence, Marseille, Apr 1998.

Senior Researcher, Microsoft Research, Sep 2002-Aug 2007.

Visiting Professor at the University of Newcastle, Mar 2007-Mar 2010.

Principal Researcher, Microsoft Research, Sep 2007-Dec 2012.

Professor of Computer Security, University of Edinburgh, Oct 2010-Jul 2023.

Principal Research Manager, Microsoft Research, Dec 2012-Dec 2017.

Senior Principal Research Manager, Microsoft Research, Jan 2018-Aug 2023.

Partner Research Manager, Microsoft Research, Sep 2023 – Nov 2023.

Chief Science Officer, Cogna, Nov 2023 – Feb 2025.

Science Advisor, Evara AI, since Mar 2024.

Science Advisor, Cogna, since Mar 2025.

https://www.linkedin.com/in/andrew-d-gordon/

Awards and Honours

Distinguished Dissertation in Computer Science, Functional Programming and
Input/Output [2], jointly awarded by the British Computer Society and the Conference
of Professors and Heads of Computing, 1993.

Invited speaker at IEEE Logic in Computer Science Provable Implementations of
Security Protocols (LICS'06), Seattle, August 2006.

Most Influential ETAPS 1998 Paper, Mobile Ambients [6], with L. Cardelli, awarded by
the European Association for Programming Languages and Systems, 2007.

Member of UK Computing Research Committee, since June 2008.

Microsoft award for transfer of SecPAL: Design and semantics of a decentralized
authorization language [10] technology to Microsoft Vine product, 2009.

Most Influential ACM POPL 2000 Paper, Anytime, Anywhere: Modal Logics for Mobile
Ambients [7], with L. Cardelli, awarded by ACM SIGPLAN, 2010.

Best Paper ETAPS 2013, Deriving Probability Density Functions from Probabilistic
Functional Programs [13], with S. Bhat, J. Borgström, and C. Russo, awarded by the
European Association for Programming Languages and Systems, 2013.

Unifying Speaker on Structure and Interpretation of Probabilistic Programs (ETAPS,
Eindhoven, April 2016). (The unifying speakers address a plenary session of all five
constituent conferences of ETAPS.)

Calc.ts in Excel for the web inducted into Microsoft Wall of Fame, July 2020.

ACM Fellow 2020, “For contributions to programming languages: their principles, logic,
usability, and trustworthiness.”

(ACM is the leading international association of computing professionals. ACM's most
prestigious member grade recognizes the top 1% of ACM members for their outstanding
accomplishments in computing and information technology and/or outstanding service
to ACM and the larger computing community.)

Honorable mention for ACM CHI 2023 paper “What it wants me to say” [20].

Honorary Professor, University of Edinburgh, since August 2023.

2024 ETAPS Test of Time Award with Luca Cardelli for 1998 paper Mobile Ambients [6].

2024 Test of Time Award of the Symposium on Computer Security Foundations with
Alan Jeffrey for 2001 paper Authenticity by Typing for Security Protocols [9].

Keynote Speaker on Requirements are all you need, (ICFP, Milan, September 2024).

Gordon has delivered over 40 invited talks at research workshops and conferences.

https://andrewdgordon.github.io/papers/fpio.pdf
https://andrewdgordon.github.io/papers/MobileAmbients_A4.pdf
https://andrewdgordon.github.io/papers/secpal_jcs_final.pdf
https://andrewdgordon.github.io/papers/anytime-anywhere.pdf
https://andrewdgordon.github.io/papers/deriving-pdfs-lmcs.pdf
https://www.microsoft.com/en-us/garage/wall-of-fame/calc-ts-in-excel-for-the-web/
https://awards.acm.org/award_winners/gordon_N026872
https://andrewdgordon.github.io/papers/GAM_CHI_2023.pdf
https://www.linkedin.com/pulse/mobile-ambients-etaps-test-of-time-award-andy-gordon-vulfe/
https://andrewdgordon.github.io/papers/MobileAmbients_A4.pdf
https://www.linkedin.com/pulse/test-of-time-award-type-effect-system-published-csfw-2001-andy-gordon-d5zte/
https://andrewdgordon.github.io/papers/jcs03.pdf
https://icfp24.sigplan.org/details/icfp-2024-papers/36/Requirements-are-All-You-Need

Leadership and Service in Academic Research Community
Gordon has chaired numerous technical program committees, including the
Symposium on Principles of Programming Languages (POPL 2017) (one of the two top
research conferences in programming languages) and twice chairing constituent
conferences of ETAPS (European Joint Conferences on Theory and Practice of
Software, the primary European forum for researchers working on Software Science):
FOSSACS 2003 and ESOP 2010. He co-chaired the Workshop on Formal Methods in
Security Engineering (FMSE 2005) and the Workshop on Probabilistic Programming
Languages, Semantics, and Systems (PPS 2018). He served on the Steering
Committees of the International Conference on Functional Programming (ICFP) and the
Symposium on Principles of Programming Languages (POPL).

Gordon is founder and organiser of many conferences on hot research topics, including
the HOOTS series of workshops on Higher Order Operational Techniques in Semantics
(Cambridge 1995, Stanford 1997, Paris 1999, and Montreal 2000), and many others
(Algebraic Process Calculi 2005, R2D2 2008, CryptoForma 2009, RADICAL 2010, and
the Dagstuhl Seminar on Probabilistic Programming 2013). He has graduated 7 PhD
students and examined 26 PhDs.

Leadership within Microsoft Research
Gordon was one of the earliest hires at MSR Cambridge in 1997 and helped build the
Research Area on Programming Principles and Tools. He led the group from 2012 until
the abolition of research areas in 2018. As Research Area Leader, he hired and
managed a set of world-class researchers. He steered the team in the direction of
programming language research applied to machine learning, and vice versa. He served
on the lab Senior Leadership Team for five years, with responsibility for PPT and for
early-stage but highly ambitious Seedling Projects across the lab – he organised training
activities on research innovation including delivering talks on Strategic Thinking for
Researchers. Gordon convened the Microsoft Research University of Edinburgh Joint
Initiative in Informatics (2011-2018), which funded more than a dozen PhD students.

Advisory and Editorial Boards

Gordon served on the Scientific Advisory Board of the Cluster of Excellence on
"Multimodal Computing and Interaction", Saarbrucken from 2008 to 2016. He sat on
the editorial board of the Springer book series on Information Security and
Cryptography and of the journal Logical Methods in Computer Science. He was
steering committee chair for Languages for Inference (LAFI), the workshop series on
programming language research techniques applied in machine learning. He sat on the
Executive Committee of the UK Computing Research Committee 2021 – 2024.

https://www.microsoft.com/en-us/research/project/university-of-edinburgh-microsoft-research-joint-initiative-in-informatics/
https://www.microsoft.com/en-us/research/project/university-of-edinburgh-microsoft-research-joint-initiative-in-informatics/
https://www.mmci.uni-saarland.de/en/scientific_advisory_board

Resumé of Achievements

Five Lines of Research and their Impact on Best-in-Class Programming Languages

Gordon has sustained over his career a high level of contribution to programming
languages and applications, with enduring influence across the computing industry.

1. PhD research on monadic I/O was adopted by Haskell, the most widely used
lazy functional language.

2. Innovation of symbolic crypto in the spi calculus, which led to ProVerif, the most
widely used tool for symbolic verification of crypto protocols.

3. Innovation of refinement types for verifying security-critical code in his F7
typechecker was adopted by F*, the most widely used language for verified
cryptographic code.

4. Innovation of information-flow levels for probabilistic programs in his research
language Tabular looks to be adopted by Stan, the most widely used
probabilistic programming language.

5. Research on semantics and AI generation of spreadsheet formulas productized
to accelerate web spreadsheets and autosuggest formulas with Excel, the most
widely used programming language ever, used by hundreds of millions of users.

1 Monadic I/O – impact on Haskell

Gordon’s prize-winning PhD work on input/output in functional languages contributed
to the design of monadic I/O in Haskell [2,4], now widely used across industry and in
education. Haskell owes its success to many factors, but it would have had little
practical impact without the I/O mechanism that Gordon joined the committee to
standardize, based on his PhD work, for Haskell version 1.3. (A measure of the
importance of monads in Haskell is that Gordon’s symbol “>>=” for monadic bind
forms half the Haskell logo – the other half is Church’s lambda symbol.)

2 Process Calculi for Security and Mobility – impact on ProVerif
Gordon’s pioneering papers on the spi calculus [5] (with Abadi) and the ambient
calculus [6,7] (with Cardelli) influenced a generation of theoreticians who built on his
work. These formalisms built on the theory of concurrency introduced by Milner et al’s
pi-calculus, using its private names to represent encryption (in the spi calculus) and
accessibility (in ambient calculus). But Gordon went beyond pi by showing how to
solve real-world practical problems, such as errors in web services security
protocols, by proofs within the theory. The spi-calculus paper [5] has over 2000
citations; the core ideas for representing cryptography introduced by spi led to the
applied pi calculus, and hence are a basis for popular tools such as Blanchet’s

https://andrewdgordon.github.io/papers/monadic-io-haskell.pdf
https://andrewdgordon.github.io/papers/fpio.pdf
https://andrewdgordon.github.io/papers/concurrent-haskell.pdf
https://twitter.com/AndrewDGordon/status/1559448300134211584
https://andrewdgordon.github.io/papers/ic99spi.pdf
https://andrewdgordon.github.io/papers/MobileAmbients_A4.pdf
https://andrewdgordon.github.io/papers/anytime-anywhere.pdf
https://andrewdgordon.github.io/papers/ic99spi.pdf
https://dl.acm.org/doi/pdf/10.1145/3127586

ProVerif, whose original input language was essentially spi.1 The ETAPS 1998 paper on
mobile ambients [6] has over 2600 citations, the most widely cited paper ever at ETAPS,
the major European research conference on theory and practice of software.

3 Refinement Types for Security – impact on F*
Gordon pioneered the use of refinement types to prove security properties, first in the
setting of the spi-calculus (the Cryptyc typechecker) [9] but subsequently for
programming languages in general. He led the development of the Minim checker for M
[12] (the language at the heart of Microsoft’s PowerQuery), and the F7 typechecker [11],
whose lasting impact is as a direct basis for the F* language developed at Microsoft and
INRIA.2 The refinement types of F7 are a key feature of F*, though it has many features
not present in F7. The crypto library HACL* is a great success for F* and ships in the
Linux and Windows kernels.3

4 Probabilistic Programming in Tabular – impact on Stan
Gordon worked on formal semantics of probabilistic programming for machine learning
[13,14,15,16]. His research language Tabular [15], to support probabilistic models for
data within Excel workbooks, aimed at democratizing machine learning to non-
developers such as scientists or business analysts. Tabular introduced the idea of
applying an information flow type system to probabilistic programs. Under his
supervision, PhD student Maria Gorinova adopted this idea in their SlicStan language
[17] to allow a simpler, more compositional syntax for Stan, the most widely used
probabilistic programming language. SlicStan is well received by the Stan community,
and its “nice composition-friendly syntax” is slated for inclusion in Stan 3.

5 End-User Programming – impact on Excel
Semantics of Formulas: Calc.ts is a new calculation engine for Excel formulas, built
from scratch on programming language principles from research on a simple reference
implementation of Excel formulas, first in F# and ported to TypeScript. Gordon invented
Calc.ts to accelerate Excel on the web to desktop performance: it solves the
problem of sluggish user experience over slow networks by evaluating formulas within
the browser. Work that began as programming language research transformed into a
serious engineering effort over several years to deliver a Microsoft Excel feature, that is
100% in production since June 2018 for the many millions of users of Excel on the web.

1 Abadi, Blanchet, and Fournet write about applied pi calculus, "we represent fresh channels, nonces,
and keys as new names, and primitive cryptographic operations as functions, obtaining a simple but
useful programming-language perspective on security protocols (much as in the spi calculus)." “The spi
calculus developed the idea that the context represents an active attacker, and equivalences capture
authenticity and secrecy properties in the presence of the attacker.” And: "Since 2001, the applied pi
calculus has been the basis for … useful software, such as the tool ProVerif."
2 Swamy et al write: “F* subsumes two previous languages, F7 and Fine.”
3 See this file for usages of F7-style refinement types in HACL*, eg, n2:size_t{v n1 * v n2 <= max_size_t}.

https://web.cs.wpi.edu/~guttman/cs564/papers/blanchet_csfw01.pdf
https://andrewdgordon.github.io/papers/MobileAmbients_A4.pdf
https://andrewdgordon.github.io/papers/jcs03.pdf
https://andrewdgordon.github.io/papers/semantic-subtyping-jfp2012.pdf
https://andrewdgordon.github.io/papers/refinement-types-for-secure-implementations.pdf
https://hacl-star.github.io/
https://andrewdgordon.github.io/papers/deriving-pdfs-lmcs.pdf
https://andrewdgordon.github.io/papers/GORDON-HENZINGER-NORI-RAJAMANI-2014-Probabilistic-Programming.pdf
https://andrewdgordon.github.io/papers/Tabular-a-schema-driven-probabilistic-programming-language.pdf
https://andrewdgordon.github.io/papers/lambda-calculus-foundation-universal-probabilistic-programming.pdf
https://andrewdgordon.github.io/papers/Tabular-a-schema-driven-probabilistic-programming-language.pdf
https://andrewdgordon.github.io/papers/slicstan.pdf
https://statmodeling.stat.columbia.edu/2019/03/13/stanc3-rewriting-the-stan-compiler/
https://arxiv.org/pdf/1609.03003.pdf
https://dl.acm.org/doi/10.1145/2034574.2034811
https://github.com/project-everest/hacl-star/blob/master/code/frodo/Hacl.Impl.Matrix.fst

It is a prize-winning project inducted in July 2020 into Microsoft’s Wall of Fame. In
terms of direct counts of end users, Calc.ts is the most impactful contribution of his
career: it saves seven person-years of waiting time every single day.

Gordon’s invention of Calc.ts arose from his collaboration with Simon Peyton Jones on
Project Yellow, a long-term partnership between Excel and Gordon’s Calc Intelligence
team at MSR Cambridge on enhancing Excel as a programming language. Yellow
features ship in production to millions of customers, including dynamic arrays, data
types, LET and LAMBDA, and have made a lasting impact to spreadsheeting in Excel.

Gordon’s paper on elastic sheet-defined functions [18] generalises the classic idea of
sheet-defined functions in spreadsheets to allow for variable-sized inputs. The paper is
remarkable in that it both provides sophisticated solutions to a range of technical
difficulties that arise when achieving the intended generalisation, and conducts a user-
study to determine whether spreadsheet users would find the solution understandable
and preferable to the best alternative (they do). The paper epitomises the effectiveness
of multi-disciplinary work in end-user programming. The journal editors say it is the first
paper with a user study ever to appear in the Journal of Functional Programming.

AI generation of formulas: Gordon and his team researched techniques to help end
users generate formulas from natural language. The GridBook system [19] generates
formulas for processing tables from natural language queries written in the grid. The
Formula Autosuggest feature automatically inserts aggregation formulas given natural
language context in the grid. A research prototype [20] generates column formulas via
AI – it received an award at ACM CHI 2023, and ships as a feature in Excel Copilot.

Other Research Highlights
His paper on representing programming languages in theorem provers [1] introduced
the distinction between deep and shallow embeddings, now standard vocabulary.

His paper on mechanizing proofs about variable binding [3], introduces what’s now
known as the locally nameless representation of lambda terms, considered by some to
be the best representation of syntax for programming language metatheory.4

His paper on typing a multi-language intermediate code [8] describes the bytecode
verifier for the .NET Runtime, to which Gordon contributed. It was the first research
paper ever on .NET, still a core piece of the Microsoft developer strategy 20 years on.

His work on the logic language SecPAL [10] for decentralized access control, including
delegation and revocation, was shipped in the Microsoft Vine product, and is widely
cited in the research literature on authorization languages.

4 Charguéraud writes: “In the context of formal proofs, Gordon [1993] appears to be the first to have used
the locally nameless representation.”

https://www.microsoft.com/en-us/garage/wall-of-fame/calc-ts-in-excel-for-the-web/
https://andrewdgordon.github.io/papers/elastic-sdfs-jfp2020.pdf
https://andrewdgordon.github.io/papers/GridBook.pdf
https://techcommunity.microsoft.com/t5/excel-blog/introducing-formula-suggestions/ba-p/3844525
https://andrewdgordon.github.io/papers/GAM_CHI_2023.pdf
https://programs.sigchi.org/chi/2023/program/content/96325
https://support.microsoft.com/en-us/copilot-excel
https://andrewdgordon.github.io/papers/EmbeddingPaper.pdf
https://andrewdgordon.github.io/papers/hug93.pdf
https://andrewdgordon.github.io/papers/popl01.pdf
https://andrewdgordon.github.io/papers/secpal_jcs_final.pdf
https://www.chargueraud.org/research/2009/ln/main.pdf

Statement of applied nature of his work
Since 2016, Gordon has focused on applied research in close partnership with the
Microsoft Excel team. With hundreds of millions of users, Excel is the world’s most
widely used programming language. Gordon shifted his research focus to serve the
needs of end-user programmers, people like educators, doctors, salespeople, etc.,
who write formulas to process spreadsheet data without having a professional interest
in programming. He began by collaborating with Simon Peyton Jones on Project Yellow,
a long-term project to modernize Excel as a programming language. Subsequently, he
led and recruited the Calc Intelligence team from scratch: a unique mix of engineers
and researchers, with skills in AI, programming languages, and human-computer
interaction. Calc Intelligence is one of the most successful and visible projects at
Microsoft Research in Cambridge: its work is publicised by Microsoft Research in this
and this blog, this podcast, in the history of research collaborations with Microsoft
Excel, and the Microsoft Wall of Fame. Building on research papers (including
[18,19,20]), his team has delivered feature after feature to the many hundreds of
millions of users of Excel. All the links below give credit to Gordon or his team.

• Project Yellow, started 2016: dynamic arrays, entities, and the LET and LAMBDA
functions. (Excel’s LAMBDA is celebrated in the popular web comic XKCD.)

• Calc.ts, started 2017, evaluates your formulas in the browser to accelerate your
experience of calculation in the web version of Excel to desktop performance.

• New formula bar architecture, begun 2020, to add AI-powered augmentations,
live now in Excel for the web, coming soon to Excel desktop.

• Advanced Formula Environment (AFE), released in 2022 as a Microsoft Garage
“beta” feature, facilitates authoring of LAMBDAs.

• Formula Autosuggestions, shipped in 2022, automatically predicts aggregate
formulas using neural net research from his team.

• Excel Labs a Microsoft Garage Project, released in 2023, bundles experimental
features including AFE, the function LABS.GENERATIVEAI() to access AI models
within the grid, sheet-defined functions [18], and the Python Editor (to write and
edit Python Formulas).

Brian Jones, former Product Manager for Microsoft Excel speaks here with Gordon on
YouTube about the “thought leadership we’ve had from the Calc Intel team”. (See also
this YouTube video and this one about Excel Labs features.)

Abigail Sellen FRS, director of MSR Cambridge, said: “Andy has consistently led a highly
impactful research team delivering a pipeline of cutting-edge technologies to Excel
through a strong partnership with that team. This includes features like Yellow, Calc.ts,
Formula Autosuggest, and LET/LAMBDAS. He has just successfully pivoted his team
around LLMs, contributing a highly successful feature in Excel Co-Pilot.”

https://www.microsoft.com/en-us/research/blog/influencing-mainstream-software-applying-programming-language-research-ideas-to-transform-spreadsheets/
https://aka.ms/CalcIntel
https://www.microsoft.com/en-us/research/blog/influencing-mainstream-software-applying-programming-language-research-ideas-to-transform-spreadsheets/
https://www.microsoft.com/en-us/research/blog/lambda-the-ultimatae-excel-worksheet-function/
https://www.microsoft.com/en-us/research/podcast/advancing-excel-as-a-programming-language-with-andy-gordon-and-simon-peyton-jones/
https://www.microsoft.com/en-us/research/blog/innovation-by-and-beyond-the-numbers-a-history-of-research-collaborations-in-excel/
https://www.microsoft.com/en-us/research/blog/innovation-by-and-beyond-the-numbers-a-history-of-research-collaborations-in-excel/
https://www.microsoft.com/en-us/garage/wall-of-fame/calc-ts-in-excel-for-the-web/
https://andrewdgordon.github.io/papers/elastic-sdfs-jfp2020.pdf
https://andrewdgordon.github.io/papers/GridBook.pdf
https://andrewdgordon.github.io/papers/GAM_CHI_2023.pdf
https://www.linkedin.com/feed/update/urn:li:activity:6427691426989121536/
https://twitter.com/jones206/status/1334544750033076225
https://xkcd.com/2453/
https://www.microsoft.com/en-us/garage/wall-of-fame/calc-ts-in-excel-for-the-web/
https://www.microsoft.com/en-us/garage/blog/2022/03/a-new-way-to-author-and-share-excel-named-formulas-advanced-formula-environment-a-microsoft-garage-project/
https://techcommunity.microsoft.com/t5/excel-blog/introducing-formula-suggestions/ba-p/3844525
https://techcommunity.microsoft.com/t5/excel-blog/advanced-formula-environment-is-becoming-excel-labs-a-microsoft/ba-p/3736518
https://andrewdgordon.github.io/papers/elastic-sdfs-jfp2020.pdf
https://www.youtube.com/watch?v=tfz4jdwsEaQ&t=1364s
https://www.youtube.com/watch?v=tfz4jdwsEaQ&t=1364s
https://www.youtube.com/watch?v=R7RRT5aelM0
https://www.youtube.com/watch?v=_9EXERguX90
https://support.microsoft.com/en-us/copilot-excel

Top 20 Most Significant Publications

1. Richard J. Boulton, Andrew D. Gordon, Michael J. C. Gordon, John Harrison, John
Herbert, John Van Tassel: Experience with Embedding Hardware Description
Languages in HOL. TPCD 1992: 129-156 [1] (317 citations)

2. Andrew D. Gordon: Functional programming and input/output. University of
Cambridge, 1992. Published as book by Cambridge University Press, 1994 [2]
(206 citations)

3. Andrew D. Gordon: A Mechanisation of Name-Carrying Syntax up to Alpha-
Conversion. HUG 1993: 413-425 [3] (91 citations)

4. Simon L. Peyton Jones, Andrew D. Gordon, Sigbjørn Finne: Concurrent Haskell.
POPL 1996: 295-308 [4] (649 citations)

5. Martín Abadi, Andrew D. Gordon: A Calculus for Cryptographic Protocols: The
Spi Calculus. Inf. Comput. 148(1): 1-70 (1999) [5] (2145 citations)

6. Luca Cardelli, Andrew D. Gordon: Mobile ambients. Theor. Comput. Sci. 240(1):
177-213 (2000) [6] (2623 citations)

7. Luca Cardelli, Andrew D. Gordon: Anytime, Anywhere: Modal Logics for
Mobile Ambients. POPL 2000: 365-377 [7] (528 citations)

8. Andrew D. Gordon, Don Syme: Typing a multi-language intermediate code.
POPL 2001: 248-260 [8] (139 citations)

9. Andrew D. Gordon, Alan Jeffrey: Authenticity by Typing for Security Protocols.
J. Comput. Secur. 11(4): 451-520 (2003) [9] (405 citations)

10. Moritz Y. Becker, Cédric Fournet, Andrew D. Gordon: SecPAL: Design and
semantics of a decentralized authorization language. J. Comput. Secur. 18(4):
619-665 (2010) [10] (472 citations)

11. Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon,
Sergio Maffeis: Refinement types for secure implementations. ACM Trans.
Program. Lang. Syst. 33(2): 8:1-8:45 (2011) [11] (348 citations)

12. Gavin M. Bierman, Andrew D. Gordon, Catalin Hritcu, David E. Langworthy:
Semantic subtyping with an SMT solver. J. Funct. Program. 22(1): 31-105
(2012) [12] (84 citations)

13. Sooraj Bhat, Johannes Borgström, Andrew D. Gordon, Claudio V. Russo:
Deriving Probability Density Functions from Probabilistic Functional
Programs. TACAS 2013: 508-522 [13] (49 citations)

14. Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, Sriram K. Rajamani:
Probabilistic programming. FOSE 2014: 167-181 [14] (562 citations)

15. Andrew D. Gordon, Thore Graepel, Nicolas Rolland, Claudio V. Russo, Johannes
Borgström, John Guiver: Tabular: a schema-driven probabilistic programming
language. POPL 2014: 321-334 [15] (69 citations)

https://andrewdgordon.github.io/papers/EmbeddingPaper.pdf
https://andrewdgordon.github.io/papers/fpio.pdf
https://andrewdgordon.github.io/papers/hug93.pdf
https://andrewdgordon.github.io/papers/concurrent-haskell.pdf
https://andrewdgordon.github.io/papers/ic99spi.pdf
https://andrewdgordon.github.io/papers/MobileAmbients_A4.pdf
https://andrewdgordon.github.io/papers/anytime-anywhere.pdf
https://andrewdgordon.github.io/papers/popl01.pdf
https://andrewdgordon.github.io/papers/jcs03.pdf
https://andrewdgordon.github.io/papers/secpal_jcs_final.pdf
https://andrewdgordon.github.io/papers/refinement-types-for-secure-implementations.pdf
https://andrewdgordon.github.io/papers/semantic-subtyping-jfp2012.pdf
https://andrewdgordon.github.io/papers/deriving-pdfs-lmcs.pdf
https://andrewdgordon.github.io/papers/GORDON-HENZINGER-NORI-RAJAMANI-2014-Probabilistic-Programming.pdf
https://andrewdgordon.github.io/papers/Tabular-a-schema-driven-probabilistic-programming-language.pdf

16. Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, Marcin Szymczak:
A lambda-calculus foundation for universal probabilistic programming. ICFP
2016: 33-46 [16] (146 citations)

17. Maria I. Gorinova, Andrew D. Gordon, Charles Sutton: Probabilistic
programming with densities in SlicStan: efficient, flexible, and
deterministic. Proc. ACM Program. Lang. 3(POPL): 35:1-35:30 (2019) [17] (25
citations)

18. Matt McCutchen, Judith Borghouts, Andrew D. Gordon, Simon Peyton Jones,
Advait Sarkar: Elastic sheet-defined functions: Generalising spreadsheet
functions to variable-size input arrays. J. Funct. Program. 30: e26 (2020) [18]
(12 citations)

19. Sruti Srinivasa Ragavan, Zhitao Hou, Yun Wang, Andrew D. Gordon, Haidong
Zhang, Dongmei Zhang: GridBook: Natural Language Formulas for the
Spreadsheet Grid. IUI 2022: 345-368 [19] (22 citations)

20. Michael Xieyang Liu, Advait Sarkar, Carina Negreanu, Benjamin G. Zorn, Jack
Williams, Neil Toronto, Andrew D. Gordon: "What It Wants Me To Say":
Bridging the Abstraction Gap Between End-User Programmers and Code-
Generating Large Language Models. CHI 2023: 598:1-598:31 [20] (149
citations)

https://andrewdgordon.github.io/papers/lambda-calculus-foundation-universal-probabilistic-programming.pdf
https://andrewdgordon.github.io/papers/slicstan.pdf
https://andrewdgordon.github.io/papers/elastic-sdfs-jfp2020.pdf
https://andrewdgordon.github.io/papers/GridBook.pdf
https://andrewdgordon.github.io/papers/GAM_CHI_2023.pdf

